icon caret-left icon caret-right instagram pinterest linkedin facebook twitter goodreads question-circle facebook circle twitter circle linkedin circle instagram circle goodreads circle pinterest circle

Genetic Linkage

Dr. Fauci Optimistic About COVID-19 Vaccine Progress

 

On June 2, JAMA (The Journal of the American Medical Association) held a Q+A for the media with Dr. Anthony Fauci, director of the NIAID, accessible here. JAMA Editor Dr. Howard Bauchner frequently interviews leaders in the quest to understand and combat COVID-19. The webinar series has been a huge help to the science journalism community.

 

Dr. Fauci was considerably more upbeat in early June than he was on a JAMA webinar March 23, soon after he was present for a White House press briefing at which more than 10 unmasked people standing close to each other addressed more than 10 journalists on matters of public health and the pandemic.

 

At that JAMA webinar, Dr. Fauci explained the vaccine timetable based on how things were done in the past, and predicted we'd have one in 12 to 18 months. He said, then, that there's "no vaccine in the immediate future, which tells us we need to rely on public health measures."

 

To continue reading, go to my blog DNA Science.

Be the first to comment

The Fallacy of the “Make It So” Mentality to Rush a COVID-19 Vaccine

Taking a meatloaf out of the oven too soon is an inconvenience, easily corrected by shoving it back in until it's ready.

 

Marketing a vaccine for COVID-19 too soon could be a disaster, with massive, far-reaching consequences. But that's what the U.S. government's Operation Warp Speed might make happen, with the goal of having a vaccine ready for distribution by year's end.

 

The problem is that vaccines aren't "found" or "discovered," like pretty shells on a beach, and if you just look enough, you'll find one. Vaccines are invented, developed, and tested, tested, tested, and that takes time. Biological factors could even make a vaccine impossible.

 

Measures are already in place to speed things along.

 

The FDA is collapsing protocols normally conducted in tandem into overlapping or parallel designs. They're allowing clinical trials to begin sooner following preclinical (non-human animal and cell-based) studies, expediting formation of institutional review boards to speed set-up of clinical trials, shifting reviewers from non-COVID projects to COVID ones, and enrolling thousands of people into clinical trials rather than the typical hundreds.

 

But will these measures be enough to roll out a vaccine six months from now? I don't think so.

 

To continue reading, go to my blog, DNA Science, at Public Library of Science. 

Be the first to comment

Microbiome Analysis of Ancient Feces

Sometimes it can be difficult to distinguish who left a pile of poop.

 

Humans who live in multi-cat or multi-canine households might run into this problem when trying to discover which diarrhea-stricken pet to haul off to the vet.

 

Similarly, a deposit of scat on a hiking trail can inspire vivid conversations on the origin of the feces. But an intrigued hiker without a phone or camera who wants to bring a friend back for a viewing may find the excrement dispersed beyond recognition from weather conditions and trampling. Only a DNA test might be able to identify the species of animal that left the deposit if contextual clues, like a nearby moose, aren't there.

 

CoproID

 

The microbial species found within excrement – the fecal microbiome – can reveal a lot about an animal.

 

To continue reading, go to my blog DNA Science, at Public Library of Science. 

Be the first to comment

Will the COVID-19 Pandemic End Like War of the Worlds or Logan’s Run?

In moments when I am not obsessively reading technical reports on COVID-19, my mind drifts to science fiction plots involving invaders. Do these films offer clues to how we can defeat the novel coronavirus SARS-CoV-2?

 

With the government-ordered CDC guidance for reopening delayed, dumbed-down, cut by an order of magnitude, and ignored, we need help, from anywhere, in protecting the vulnerable while restoring some economic normalcy.

 

The space invaders of the classic depictions either succumb to slowly-emerging natural weaknesses or we blow them up. But the scariest sci-fi theme to me isn't about monsters or microbes at all.

 

In the film Logan's Run, people over age 30 sacrifice themselves to save resources for the others.

 

To continue reading, go to my DNA Science blog at Public Library of Science. 

Be the first to comment

Meet the Cammalleri Sisters: How Did They Live to Be 106 and 113?

Recently in my endless email about COVID-19 popped up a new paper analyzing the health of two Italian sisters who lived to remarkably old ages.

 

"The Phenotypic Characterization of the Cammalleri Sisters, an Example of Exceptional Longevity," from Calogero Caruso M.D. of the University of Palermo, Italy, and colleagues, is published in Rejuvenation Research.

 

Filippa was a "semi-supercentenarian" of 106 years, born December 12, 1911 and who died July 6, 2018. Her sister Diega, born October 23, 1905 and who died June 15, 2019, was a supercentenarian, living until age 113. Among centenarians – those who see their 100th birthdays – only 1 in 1,000 makes it to 110. Only 27 supercentenarians are known in the world.

 

To continue reading, go to my DNA Science blog at Public Library of Science. 

Be the first to comment

Rare Disease Families Cope With COVID

Families that have members with rare diseases may face challenging situations during the pandemic. They're experts in navigating complex medical situations, but they must now weigh the risks and benefits of taking a loved one with a complication from a rare disease to a hospital.

 

"We have experience living with uncertainty, for years or even decades. Many of us have experience with isolation, and medically fragile people have always needed to be careful of exposure to people with illnesses. And many of us haven't been able to do things other families do," said Albert Freedman, PhD, a clinical psychologist and caregiver for a 24-year-old son who has spinal muscular atrophy (SMA). He spoke at a webinar that the National Organization for Rare Disorders (NORD) convened March 31, "A Rare Response: Addressing the COVID 19 Pandemic."

 

To continue reading, go to my blog DNA Science, at Public Library of Science (PLOS). 

Be the first to comment

Coronavirus immunity passports could create a world of ‘us and them’. But here’s why they make sense

Dividing groups of people into "us" and "them" isn't usually a good idea, but in the scary new world of COVID-19, it makes a certain sense. Issuing "immunity licenses" – aka passports or certificates – to people whose blood contains neutralizing antibodies against the novel coronavirus may be a safer way to reopen parts of the economy than letting unchecked crowds spill onto beaches, pack into subway cars, and fill eateries, stadiums, and concert venues.

 

Immunity licenses would "give holders certain time-limited work and social freedoms, joining larger gatherings or returning to nonessential jobs," wrote Mark A. Hall, of the Wake Forest University Schools of Law and Medicine and David M. Studdert, from Stanford University Schools of Law and Medicine, in a recent Viewpoint in JAMA.

 

License holders could safely:

 

     Serve pizza, make lattes, scoop ice cream.
     Visit hospitalized loved ones or care for patients.
     Work in nursing homes, assisted living facilities, day care centers, schools, and fitness centers.
     Cut hair, trim nails, fill cavities, and fit eyeglasses

 

To continue reading, go to Genetic Literacy Project, where this post first appeared.
 

Be the first to comment

The tricky path for using stem cells to treat coronavirus-ravaged lungs

The coronavirus pandemic has unleashed a wave of repurposing efforts, from old malaria drugs prescribed off-label to anti-virals stalled in development from past scourges, like remdesivir for Ebola, SARS, and MERS. Stem cells are finding new niches too, in helping to heal the devastation the novel coronavirus can leave in its wake.

 

It's understandable in the face of such a swift killer as COVID-19 to desperately try any treatment that makes even a bit of sense. But as many experts have insisted, only a controlled clinical trial can produce reliable information on efficacy.

 

"One advantage of a randomized controlled clinical trial is that if you find something that doesn't work, you get it off the table quickly. I've been through this before in the early HIV years, when there wasn't any therapy at all. There was the tension between doing a trial and just giving someone something," said Anthony Fauci, MD, director of the National Institute of Allergy and Infectious Disease and unofficial guru of the pandemic, on a recent JAMA Network webinar.

 

To continue reading, go to Genetic Literacy Project, where this post first appeared.

Be the first to comment

Quest for coronavirus treatment inspires modern twist on antique technique using survivors’ plasma

There's no shortage of research efforts looking for ways to stop, or at least slow down, the novel coronavirus. Of course, those strategies involving cutting edge techniques, including CRISPR gene editing, tend to get most of the attention. If it's new, it must better, after all.

 

But what if we could reach back 100 years for a solution? That's essentially what we've done with the recent decision by the US Food and Drug Administration to authorize the emergency use of an old technique — convalescent plasma — for patients severely ill with COVID-19. The idea is that plasma from people who have recovered can transfer protective antibodies to a still-sick recipient. Donors must have been symptom-free for 14 days with a negative test or for 28 days without one.

 

"We think it shows promise, and we're going to be starting that this week," said New York governor Andrew Cuomo just before the announcement. 

 

Natural antibody cocktails

 

The rich history of convalescent plasma meanders through the plagues of the twentieth century. Hearing about it in the context of COVID awakened memories of receiving a similar treatment, in the 1960s.

 

To continue reading, go to Genetic Literacy Project, where this post first appeared.

Be the first to comment

‘At home’ coronavirus test? How CRISPR could change the way we search for COVID-19

If we take the advice of health experts, we won't be attempting a return to normal life in the US until we get better at identifying people infected with the novel coronavirus. That need is driving researchers across the nation to look for ways to expand our toolbox of testing options. And now a new test, developed using CRISPR gene editing technology, has been added to the mix.

 

About 5.4 million tests have been done in the US, according to the COVID Tracking Project, in a population of 328.2 million. That might sound like enough to keep ahead of an infectious disease that has "only" killed in five figures, but such an assumption grossly oversimplifies the situation.

 

Controlling the pandemic in the US is going to require a daunting number of diagnostic tests – not just for the sick, but to verify when they're better (two tests 24 hours apart for hospital discharge), in contact tracing to limit spread, and in the many individuals who've been infected but have few or no symptoms.

 

"In a few countries, the use of diagnostic testing on a massive scale has been a cornerstone of successful containment strategies," write Matthew P. Cheng, MDCM. McGill University Health Centre and colleagues in a recent article in Annals of Internal Medicine. The US isn't on that list and has been struggling to catch up.

 

To continue reading, please go to Genetic Literacy Project, where this post first appeared.

Be the first to comment