instagram pinterest linkedin facebook twitter goodreads facebook circle twitter circle linkedin circle instagram circle goodreads circle pinterest circle

Genetic Linkage

How the Various COVID Vaccines Work

COVID vaccine hesitancy is on the rise, perhaps in the wake of pressure to speed approval beyond scientific reason. But I think some of the hesitancy might be due to confusion over how so many different vaccines can target the same pathogen – and why this is a good idea.

 

The ultimate voice of scientific reason, Anthony Fauci said in a media webinar:

 

"I'm cautiously optimistic that with the multiple candidates with different platforms that we're going to have a vaccine with a degree of efficacy that would make it deployable. The overwhelming majority of people make an immune response that clears the virus and recover. If the body can mount an immune response and clear the virus in natural infection, that's a pretty good proof-of-concept that you'll have an immune response against a vaccine."

 

Having choices would provide options for people not covered by some of the vaccines, like those over age 65 and people with certain medical conditions. "It's a misperception that vaccine development is a race to be a winner. I hope more than one is successful, with equitable distribution," Fauci said.

 

The vaccines work in what can seem to be mysterious ways, but all present a pathogen in some form, or its parts, to alert the immune system to mount a response. Understanding how it all happens isn't like learning "how the sausage gets made." Knowledge may quell fears.

 

To continue reading, go to my blog DNA Science.

Be the first to comment

Extinction of the Woolly Rhino: Ancient Genomes Point to Climate Change, not Overhunting

Two views of the forces behind extinction of the woolly rhino elegantly illustrate how scientific thinking shifts to embrace new knowledge – a phenomenon that reverberates as new findings about COVID-19 pour in.

 

Several large animal species ("megafauna") vanished with the last ice age, including woolly rhinos and mammoths, huge armadillos, cave lions, and sabertooth tigers. The prevailing view of the extinctions blamed overhunting by humans, a scenario that once roughly fit broad timelines. But in a new report in Current Biology, DNA data from preserved rhinos open a window into the past onto climate change. The new view charts the ebb and flow of long-ago rhino populations, while identifying specific gene variants that flesh out how well the animals had been adapted to the cold – putting them at a disadvantage when the climate warmed.

 

It's interesting to contrast how different types of data support different conclusions.

 

To continue reading, go to my DNA Science blog.

Be the first to comment