instagram pinterest linkedin facebook twitter goodreads facebook circle twitter circle linkedin circle instagram circle goodreads circle pinterest circle

Genetic Linkage

The First COVID-19 Vaccines: What’s mRNA Got To Do With It?

Most of us have an intuitive understanding of how a vaccine works: show the immune system a bit of a pathogen, or something mimicking it, and trick it into responding as if natural infection is happening. The COVID-19 pandemic ushered in a flood of vaccine options.

 

When I was writing "How the various COVID vaccines work," which ran here at DNA Science on September 10, I had to keep reviewing summary charts to remember who was doing what. Vaccine technology has gone beyond live, weakened, or killed virus, even past the once-groundbreaking subunit vaccines that present parts of a pathogen, like the hepatitis B surface antigen or pertussis toxin. Now we have DNA and RNA vaccines too, delivered in different ways.

 

The first two vaccines against COVID-19, Tozinameran (the Pfizer/BioNTech vaccine) and mRNA-1273, Moderna's still unchristened candidate on the brink of emergency use authorization, are mRNA. And that's confusing people, based, perhaps, on when they took high school biology (more on that coming). So here's a brief consideration of mRNA and how it can alert the immune system to fight SARS-CoV-2.

 

To continue reading, go to my blog DNA Science at Public Library of Science.

Be the first to comment