icon caret-left icon caret-right instagram pinterest linkedin facebook twitter goodreads question-circle facebook circle twitter circle linkedin circle instagram circle goodreads circle pinterest circle

Genetic Linkage

The Dawn of Molecular Genetics: A Glimpse of History in a Textbook from 1952

The email from my former neighbor Shaun Kuczek was unexpected.

 

"Hi Ricki! My Dad passed in July, and we're cleaning out his house. He was a biology teacher for 35 years and I have 40 or so old biology textbooks. I remember that you write biology textbooks, and maybe you have an idea of a way to pass them along? They're all old, 1950s, 1960s. If you think of anything, please let me know."

 

Bernie Kuczek had been 91. In addition to teaching high school biology and chemistry and coaching baseball, Bernie's claim to fame was being drafted by the Brooklyn Dodgers and sitting alongside Jackie Robinson in the dugout. Alas, a broken leg ended his baseball career. Bernie served in the Korean War and worked summers as a fisheries biologist.

 

Treasure from 1952, Just Before Watson and Crick's Paper

Be the first to comment

FDA Returns Disappointing News for ALS Stem Cell Therapy

Last week DNA Science covered a setback in a clinical trial of a gene therapy for Duchenne muscular dystrophy (DMD). Also recently, FDA's Cellular, Tissue, and Gene Therapies Advisory Committe turned down a stem cell treatment for amyotrophic lateral sclerosis, aka ALS, Lou Gehrig's disease, or motor neuron disease.

 

The two conditions and the therapeutic approaches differ, but their clinical trials illustrate the importance of selecting patients whose characteristics suggest that they are the most likely to respond.

DMD affects 1 in 3,500 male births, compared to approximately 1 in 400 people who develop ALS during their lifetime.

 

To continue reading, go to DNA Science, where this post first appeared.

Be the first to comment

Is Recent Gene Therapy Setback for Duchenne Muscular Dystrophy (DMD) Déjà vu All Over Again?

In the final chapter of my 2012 book The Forever Fix: Gene Therapy and the Boy Who Saved It, I predicted that the technology would soon expand well beyond the rare disease world.

 

I was overoptimistic. Gene therapy clearly hasn't had a major impact on health care, offering extremely expensive treatments for a few individuals with rare diseases. We're still learning possible outcomes of sending millions of altered viruses into a human body. Can they deliver healing genes without triggering an overactive immune response?

 

A report in the September 28, 2023 The New England Journal of Medicine describes a young man with Duchenne Muscular Dystrophy (DMD) who died just days after receiving gene therapy. The details are disturbingly reminiscent of the famous case of Jesse Gelsinger, who died from a ferocious immune response to experimental gene therapy in September 1999.

 

To continue reading, go to DNA Science, where this post first appeared.

Be the first to comment

Determining Disease Risks Based on Genetic Ancestry Can Counter Health Care Disparities, But Doesn’t Go Far Enough

When it comes to estimating risk of a disease that is either genetic or has a genetic component, ancestry of an individual plays an important role. That's because increased risk of a particular health condition may be associated with a gene variant (aka mutation) in one population, but not another. Someone from a group not represented in the data on which a clinical test is based could receive an incorrect risk assessment, or even prescribed a drug unlikely to work.

 

A team from the Johns Hopkins Bloomberg School of Public Health and the National Cancer Institute has developed a new algorithm for genetic risk-scoring for major diseases across diverse ancestral populations. Their findings are published in Nature Genetics.

 

Although the algorithm is a start, and takes a logical approach to address health care disparities, it doesn't go far enough. Considering large groups – like Latinos or Africans – doesn't parse humanity sufficiently to hold much predictive power for genetic diseases, or conditions with large genetic components.

 

Tools to Track Disease: Biobanks to AI

 

To continue reading, go to DNA Science, where this post first appeared.

Be the first to comment