icon caret-left icon caret-right instagram pinterest linkedin facebook twitter goodreads question-circle facebook circle twitter circle linkedin circle instagram circle goodreads circle pinterest circle

Genetic Linkage

Seventy Years Since Watson and Crick’s Paper Introduced DNA: A Brief History of the Molecule of Life

On April 25, 1953, "MOLECULAR STRUCTURE OF NUCLEIC ACIDS: A Structure for Deoxyribose Nucleic Acid" was published in Nature. J. D. Watson and F. H. C. Crick's work was a brilliant deduction based on the experimental findings of many others.


DNA is a sleek double helix, with "rungs" consisting of a purine base paired with a smaller pyrimidine base: adenine (A) with thymine (T) and guanine (G) with cytosine (C). Hydrogen bonds link the pairs, individually weak but in large numbers powerfully strong, like a zipper.


"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material," Watson and Crick wrote near the end of the one-page article, planting the seeds for modern biotechnologies like recombinant DNA, transgenic organisms, gene silencing and therapy, and CRISPR gene editing.


The April 1953 paper was groundbreaking yet a bit of a tease, a "save-the-date" of sorts to announce the discovery and briefly describe the structure, for much confirming work needed to be done. Six months later, Francis Crick eloquently laid out the clues in "Structure of the Hereditary Material," in a Scientific American volume, "Genetics": "A genetic material must carry out two jobs: duplicate itself and control the development of the rest of the cell in a specific way." DNA encodes amino acid sequences comprising proteins, which impart traits.


On this anniversary of the famous paper, DNA Science revisits the discoveries that catalyzed Watson and Crick's deduction of how a molecule could carry and transmit genetic information.


To continue reading, go to DNA Science, where this post first appeared.

Be the first to comment